b体育:除尘器范文10篇
2024-04-11 01:34:37
节能减排的原理研究设计出能够智能识别、节能环保、适应性强的多用智能除尘器。首先,对自供电电源系统进行研究,即自己带有太阳能发电、充电以及蓄电的装置,不需要提供外部供电电源,可以根据用户的需要随时启动和停止;其次,对行走控制系统进行研究,通过全覆盖遍历路径规划的实现方案,使除尘器在不同路段自动识别以恒定速度清扫,提高清扫质量;最后,对除尘系统进行研究,对除尘器的设计及其关键部件的结构优化,使除尘器适用于屋顶、大棚、平原、丘陵等多种区域和地形,能够一机多用。
首先,对除尘器的自供电电源系统进行研究,即自带充电以及存蓄电的装置,能够自己供电,不需要提供外部供电电源,以根据用户的需要随时启动和停止,从而达到节能环保的目的。1.1自供电电源系统组成。自供电电源系统是由匹配电路、整流电路、储能电容、控制电路及放电电路组成。1.2实验。在自供电设计研究后,自供电电源系统的实时性和整体数据的丢失率的大小也是自供电系统性能的好坏衡量标准。本次实验根据实际情况测试了数据的丢失率,推导出数据的无线传输距离之间的关系,通过系统整体数据的丢失率、数据的实时性以及自供电电源电压受环境能量变化的影响测试了系统的稳定性及可靠性。1.2.1可靠性测试。表1所示的是在不同距离下,路由节点接收到传感器的节点数据组数的统计情况。从表1可以看出传感器的节点与路由节点之间的距离应该大概在30m以内,如果超过30m,可以在传感器的节点和路由节点之间加入若干个中继节点,达到延拓通信距离的目的。从表2中可以看出整体系统的数据丢失率大约为1%,这主要是由路由节点到服务器间的数据丢失引起的。因此在实际测量过程中如果想及时地了解监测电线的安全状况,可以通过通过观察实时地从服务器上接收到传感节点采集到的电线自供电电源电压测试。传感器节点在工作时会消耗能量,当监测电线有电流通过时,自供电电源的电压会相应变化。随着传感器节点工作时间发生变化的趋势图。图2可以看出,电池电压随着传感器节点工作而上下波动,并且波动幅度小,传感器节点的能耗也比较低。
除尘器是利用离心力将粉尘从旋转气流中分离出来并进行捕集的一种分离装置,由于该装置结构简单、操作方便、价格低廉、能耗低、耐高温和高压,对于捕5μm以上的颗粒粉尘效率较高。我们所得到的除尘效率公式为:η0=1-escapenumber-tracked()×100%对除尘器内颗粒粒径1.50-15.00μm进行线性回归。最后,对除尘擦的除尘系统进行研究,在保证除尘器高效、稳定运行的基础上除尘器的设计及其关键部件的结构优化,在保证除尘器能够高效、稳定运行的基础上基于优化理论合理的选择除尘的行走路线,对影响除尘器运行的配套系统如除尘方式、储灰系统、降温系统以及电气自动控制系统等进行了分析研究,并提出了改进措施,使除尘器适用于屋顶、大棚、平原、湖面、丘陵、沙漠等多种区域和地形,可全天候工作,达到适应能力强一机多用的目标。
[1]李小川,罗会清,胡海彬,等.自激式除尘器压力波动特性与气液体合研究[J].煤炭学报,2015,40(12):3001-3006.
旋风除尘器利用离心力和电场力的共同作用分离粒子。旋风除尘器内安装电晕极(称旋风除尘器)但不加电压的运行工况称为旋风除尘器的“静态”工况,此时的除尘效率称为旋风除尘器的静态除尘效率。为了研究安装电晕极对旋风除尘器除尘效率的影响,对常规旋风除尘器和旋风除尘器两种情况分别进行了各种入口风速下的除尘效率实验。常规旋风除尘器选用长筒体型,筒体直径为40mm、入口尺寸为270×110mm,排灰口直径为116mm。排气管直径为200mm,排气管插入深度460mm。在常规旋风除尘器内安装电晕极构成旋风除尘器,电晕极由15根直径4mm钢筋构成网状结构并固定在排气管上。实验粉尘为400h目滑石粉,发尘浓度控制在5g/m3左右。
常规旋风除尘器安装电晕极后除尘效率明显提高,除尘效率的变化规律与常规旋风除尘器除尘效率的变化规律相同,即先随着入口风速的增加而增加,至一最佳运行工况后,除尘效率又有所降低。常规旋风除尘器最佳运行工况在入口风速V=17m/s左右,此时,其总除尘效率达到了80%;而安装电晕极以后,旋风除尘器的静态最佳运行工况约在入口风速V=20m/s左右,静态总除尘效率达到约85%,增幅为6.3%左右。这说明仅仅安装电晕极而不加电压,就能使旋风除尘器的除尘效率明显提高电晕极。在旋风除尘器内具有提高效率的作用。
由上述可知,电晕极在旋风除尘器内具有提高效率的作用,通过实验发现,电晕极在旋风除尘器内也具有降低阻力的作用。
旋风除尘器阻力系数ξ2=4.81,常规旋风除尘器的阻力系数ξ1=9.21,即旋风除尘器的阻力系数比常规旋风除尘器的阻力系数降低了约47%。因此,靠电晕极的作用,较好的改善了旋风除尘器的阻力特性,与常规旋风除尘器相比,旋风除尘器是一种低阻力的粒子分离设备,这对于节能具有极为重要的实际意义。
综上所述,在常规旋风除尘器内安装电晕极,具有降低阻力和提高静态除尘效率(称为“降阻增效”)的作用,为什么电晕极会对旋风除尘器的阻力和效率有这么大的影响呢?下面将进行分析。
切向速度的大小和径向速度分布直接影响颗粒分离的效率,同时轴向速度分离影响了粒子在旋风除尘器内有效分离区域的停留时间,必然对颗粒的除尘效率产生较大的影响。
旋风除尘器流动阻力主要由三部分组成:即进口局部阻力、旋风筒内旋涡流场中的阻力、排气芯管内的流动阻力。
可见,旋风除尘器的阻力和除尘效率与其内部的流场分布密切相关,要分析电晕极降阻增效的原因,就需要知道旋风除尘器内的流场分布。
为了研究电晕极安装前后旋风除尘器内三维速度分布的变化规律,分别对旋风除尘器内不安装电晕极(称常规旋风除尘器)和旋风除尘器内安装电晕极(称旋风除尘器)两种情况在相同的入口流速下进行了流场测试,流场测试仪器为五孔探针,在除尘器锥体部分及其他一些位置,电晕极比较密集,有的地方五孔探针无法插入,测点适当减少。某些断面在半径的二分之一到三分之一处均无法读取数据(4、5孔的压力不能调到平衡),分析认为由于电晕极对于筒体内流场的扰动,这些位置气流较为紊乱,使4、5孔无法保持压力平衡。
安装电晕极后,切向速度的分布变得平缓、峰值降低。内涡旋不再是强制涡流动,文献也得出了类似的结论。另外,内外涡旋交界面半径明显外移,即内外涡旋交界面直径由常规旋风除尘器的0.5de外移为1.2de(de为排气管直径)。在筒体和锥体的上半部,下行流区的切向速度有所增大,上行流区的切向速度明显减小,在除尘器内的整个流动区域,平均切向速度明显降低。
旋风除尘器上、下行流交界面内移,即上行流区变宽。在下行流区,轴向速度的绝对值减小,这说明粉尘粒子在旋风除尘器的有效分离区域内的停留时间增加,这对离心力分离粒子是有利的,能够提高除尘效率。另外,轴向速度梯度减小,内摩擦阻力降低,有利于旋风除尘器的减阻。
径向速度分布比较紊乱,尤其在电晕极附近,径向速度分布与常规旋风除尘器相比有较动。径向速度方向基本都是向心的,其值的大小与常规旋风除尘器相比没有明显的规律,大多数稍微小于原旋风除尘器的相应值,由于切向速度和径向速度对粒子的分离起着相反的作用,前者产生离心力使粒子做向外筒壁的径向运动,后者则使粒子做向心的径向运动从而进入内漩涡。径向速度值的减小可提高除尘效率。
就静压而言,旋风除尘器下行流区的静压值比常规旋风除尘器略低(绝对值增大);在排气管底部附近,上行流区静压值比常规旋风除尘器增加显著(绝对值减小),大大高于常规旋风除尘器,总的结果是径向上压力梯度减小。
安装电晕极后,径向静压梯度的减小,意味着液体无论是作旋转运动还是作轴向流动,各流层间来自外界的法向作用力减小,使得内摩擦阻力降低。这必然引起旋风除尘器的降低。
在旋风除尘器内的特定位置上安装电晕极,在不加电压的“静态”条件下,能使旋风除尘器的除尘效率提高约6%。原因是:电晕极对旋风除尘器内的流场分布产生了较大影响,在下行流区切向速度较常规旋风除尘器流场的切向速度稍微增大,下行流区是旋风除尘器的主要有效分离区域,除尘效率的高低主要是由下行流区的切向速度的大小决定的。因此,电晕极对下行流区的切向速度产生的影响(下行流区的切向速度增大)有利于提高除尘效率。旋风除尘器上、下行流交界面内移,即下行流区变宽,在下行流区,轴向速度的绝对值减小,粉尘粒子在旋风除尘器的有效分离区域内的停留时间增加,这对离心力分离粒子是有利的,能够提高除尘效率。
旋风除尘器内的阻力大大降低,旋风除尘器的阻力系数(ξ2=4.81)比常规旋风除尘器的阻力(ξ1=9.21)降低了约47%。主要原因是:电晕极使旋风除尘器内整个区域的切向速度分布曲线比常规旋风除尘器内的切向速度分布曲线变得平缓,速度的最大值与平均值都有所降低,减少了旋转动能损失,切向速度梯度减小和径向静压梯度的减小,内摩擦阻力降低,引起旋风除尘器阻力的降低。
【摘要】本文根据旋风除尘器内三维速度分布的测试结果,分析了电晕极的安装对旋风除尘器除尘效率和阻力的影响。在特定的位置上安装电晕极能使旋风除尘器内的速度分布更有利于提高离心力的分离作用,通过测试可知,在安装电晕极但不加电压(称“静态”)的条件下,能使旋风除尘器的除尘效率提高约5%~6%,同时,由于安装了电晕极,改善了旋风分离内的速度分布,使旋风除尘器内的阻力大大降低,旋风除尘器的阻力系数(ξ1=4.81)比常规旋风除尘器的阻力系数(ξ2=9.21)降低了47%。
[1]张吉光,叶龙.计算粒子在旋风除尘器内平均停留时间的新方法.青岛建筑工程学院学报,1990,11(3):22-27.
通过实验测定了常规旋风除尘器内下降流量沿高度的分布,发现在排气芯管入口断面附近有约24%的短路流量。测定了安装不同类型减阻杆后的下降流量,发现非全长减阻杆下端固定时,有增加减阻杆上方断面下降流量的功效,这将延长含尘气流在除尘器内的停留时间,提高除尘效率。
旋风除尘器内不同高度断面上的过流量,对上行流来讲为上升流量,对下行流来讲为下降注量,上升流量和下降流量的忽略漏风因素时应该是相等的。为简单起见,将断面上的过流量简称为下降流量。下降流量是旋风除尘器一个重要性能指标,研究旋风除尘器内沿高度下降流量的分布规律及如何增加断面上的下降流量,是很有实际意义的。
实验模型为筒体直径D=340mm的Stairmand高效型旋风除尘器[1],实验中控制系统处理风量L=0.1237m3/s,测量断面的划分见图1。以断面1例,由实验所得四方位轴向速度分布的测量计算结果拟合所得轴向速度表达式为
由此可见,由于实验过程中存在的误差以及公式拟合时的误差,积分所得的上、下行流区过流量并不相同,其判别的大小反映了整体误差的大小。此时、上、下行流区地流量的相对误差
由于该相对误差不大,下文将上、下行流区过流量的平均值L=0.1767m3/s作为该断而后下降流量。
从上述上、下行流区过流量的计算已经知道,断面1处的下降流量为0.1767m3/s。因此时旋风除尘器的处理流量为0.2317m3/s,所以,其差值0.055m3/s便是断面1以上从下行注区向心流入上行流区的空气流量。这部分流量占除尘器处理风量的23.7%。
在除尘器排气芯管入口断面0至断面1仅30mm的高度范围(占除尘器总高度1360mm的2.2%)内,就有占总处理风量23.7%的空气进入上行流而被排出除尘器,这说明在除尘器入口和排气芯管入口附近存在很大的短路流量(下文中将断面1以上部分进入上行流区的注量统称为短路流量)。尽管这部分含尘空气并不是像管流那样直接从除尘器入口流到排气芯管入口,要经过一定角度的旋转运行,但含尘空气在除尘器内这样短的停留时间,不可能给粉尘提供足够的分离能力。因此笔者认为,旋风除尘器入口附近很大的短路流量,将是提高旋风除尘器效率的一个方向。
旋风除尘器的短路流量理论上还可以通过径向速度对排气芯管入口断面0至断面1的芯管假想处长管壁面积的积分求得。为此,将每一断面处,排气芯管半径r=0.085m时的径向速度进行四个方位的平均,然后将径向速度对高度(这里以测量断面编号代替)的分布进行多项式拟合,其结果如图3所示。
由图3可知芯管入口断面0与断面1之间径向速度的轴向分布,为简便起见,短路流量按平均速度计算:
这里按径向速度计算所得的短路流量0.0521m3/s比前面按轴向速度计算所得的短路流量0.055m3/s小5.3%。原因是按径向速度计算短路流量时,没有考虑排气芯管与筒壁之间环形空间的二次流问题。从测量所得全流场轴向速度的分布可明显看出,排气芯管外壁附近向下的轴向速度增大,这部分流体沿芯管外壁向下注到芯管入口断面迅速短路排出除尘器。因此,实际情况是在芯管入口断面处有更大的径向速度。而上述计算中(图3)芯管入口断面0的径向速度是通过断面11至断面1的径向速度沿轴向的分布规律外延得到,其量值必然偏小,从而导致计算所得的短路流量偏小。
鉴于上述分析,并考虑到误差并不大的实际情况,笔者认为由轴向速度分布计算所得的短路流量和由径向速度分布计算所得的短路流量是吻合的。因此,无论是从流场测定结果与前人所得结果的对比,还是从上、下行流区过流量的平衡,或者从按不同途径计算所得的短路流量能够较好地吻合,都证明了本文实验方法的可靠、所得实验结果的准确。
按照前面轴向速度对流通面积积分的方法,一并计算常规旋风除尘器安装了不同类型减阻杆[2]后下降流量的变化,并将各种情况下不同断面处下降流量占除尘器总处理流量的百分比绘入图4(为方便起见,以减阻杆型号代替安装减阻杆后除尘器的型号),为表明上、下行流区过流量的平均值即下降流量与实际上、下地流区过流量差别的大小,图4中同时描绘出了误差带。
从图4可看出各模型的短路流量及下降流量沿除尘器高度的变化。与常规旋风除尘器相比,安装全长减阻杆1#和4#后使短路流量增加但安装非全长减阻杆H1和H2后使短路流量减少。安装1#和4#后下降流量沿流程的变化规律与常规旋风除尘器基本相同,呈线性分布,三条线近科平行下降。但安装H1和H2后,分布呈折线而不是直线,其拐点恰是减阻杆从下向上插入所伸到的断面位置。由此还可以看到,非全长减阻杆使得其伸至断面以上各断面的下降流量增加,下降流量比常规除尘器还大,但接触减阻杆后,下降流量减少很快,至锥体底部达到或低于常规除尘器的量值。
短路流量的减少可提高除尘效率,增大断面的下降流量,又能使含尘空气在除尘器内的停留时间增长,为粉尘创造了更多的分离机会。因此,非全长减阻杆虽然减阻效果不如全长减阻杆,但更有利于提高旋风除尘器的除尘效率。
常规旋风除尘器排气芯管入口断面附近存在高达24%的短路流量,这将严重影响整体除尘效果。如何减少这部分短路流量,将是提高效率的一个研究方向。非全长减阻杆减阻效果虽然不如全长减阻杆好,但由于其减小了常规旋风除尘器的短路流量及使断面下降流量增加、使旋风除尘器的除尘效率提高,将更具实际意义。
旋风除尘器利用离心力和电场力的共同作用分离粒子。旋风除尘器内安装电晕极(称旋风除尘器)但不加电压的运行工况称为旋风除尘器的“静态”工况,此时的除尘效率称为旋风除尘器的静态除尘效率。为了研究安装电晕极对旋风除尘器除尘效率的影响,对常规旋风除尘器和旋风除尘器两种情况分别进行了各种入口风速下的除尘效率实验。常规旋风除尘器选用长筒体型,筒体直径为40mm、入口尺寸为270×110mm,排灰口直径为116mm。排气管直径为200mm,排气管插入深度460mm。在常规旋风除尘器内安装电晕极构成旋风除尘器,电晕极由15根直径4mm钢筋构成网状结构并固定在排气管上。实验粉尘为400h目滑石粉,发尘浓度控制在5g/m3左右。
常规旋风除尘器安装电晕极后除尘效率明显提高,除尘效率的变化规律与常规旋风除尘器除尘效率的变化规律相同,即先随着入口风速的增加而增加,至一最佳运行工况后,除尘效率又有所降低。常规旋风除尘器最佳运行工况在入口风速V=17m/s左右,此时,其总除尘效率达到了80%;而安装电晕极以后,旋风除尘器的静态最佳运行工况约在入口风速V=20m/s左右,静态总除尘效率达到约85%,增幅为6.3%左右。这说明仅仅安装电晕极而不加电压,就能使旋风除尘器的除尘效率明显提高电晕极。在旋风除尘器内具有提高效率的作用。
由上述可知,电晕极在旋风除尘器内具有提高效率的作用,通过实验发现,电晕极在旋风除尘器内也具有降低阻力的作用。
旋风除尘器阻力系数ξ2=4.81,常规旋风除尘器的阻力系数ξ1=9.21,即旋风除尘器的阻力系数比常规旋风除尘器的阻力系数降低了约47%。因此,靠电晕极的作用,较好的改善了旋风除尘器的阻力特性,与常规旋风除尘器相比,旋风除尘器是一种低阻力的粒子分离设备,这对于节能具有极为重要的实际意义。
综上所述,在常规旋风除尘器内安装电晕极,具有降低阻力和提高静态除尘效率(称为“降阻增效”)的作用,为什么电晕极会对旋风除尘器的阻力和效率有这么大的影响呢?下面将进行分析。
切向速度的大小和径向速度分布直接影响颗粒分离的效率,同时轴向速度分离影响了粒子在旋风除尘器内有效分离区域的停留时间,必然对颗粒的除尘效率产生较大的影响。
旋风除尘器流动阻力主要由三部分组成:即进口局部阻力、旋风筒内旋涡流场中的阻力、排气芯管内的流动阻力。
可见,旋风除尘器的阻力和除尘效率与其内部的流场分布密切相关,要分析电晕极降阻增效的原因,就需要知道旋风除尘器内的流场分布。
为了研究电晕极安装前后旋风除尘器内三维速度分布的变化规律,分别对旋风除尘器内不安装电晕极(称常规旋风除尘器)和旋风除尘器内安装电晕极(称旋风除尘器)两种情况在相同的入口流速下进行了流场测试,流场测试仪器为五孔探针,在除尘器锥体部分及其他一些位置,电晕极比较密集,有的地方五孔探针无法插入,测点适当减少。某些断面在半径的二分之一到三分之一处均无法读取数据(4、5孔的压力不能调到平衡),分析认为由于电晕极对于筒体内流场的扰动,这些位置气流较为紊乱,使4、5孔无法保持压力平衡。
安装电晕极后,切向速度的分布变得平缓、峰值降低。内涡旋不再是强制涡流动,文献也得出了类似的结论。另外,内外涡旋交界面半径明显外移,即内外涡旋交界面直径由常规旋风除尘器的0.5de外移为1.2de(de为排气管直径)。在筒体和锥体的上半部,下行流区的切向速度有所增大,上行流区的切向速度明显减小,在除尘器内的整个流动区域,平均切向速度明显降低。
旋风除尘器上、下行流交界面内移,即上行流区变宽。在下行流区,轴向速度的绝对值减小,这说明粉尘粒子在旋风除尘器的有效分离区域内的停留时间增加,这对离心力分离粒子是有利的,能够提高除尘效率。另外,轴向速度梯度减小,内摩擦阻力降低,有利于旋风除尘器的减阻。
径向速度分布比较紊乱,尤其在电晕极附近,径向速度分布与常规旋风除尘器相比有较动。径向速度方向基本都是向心的,其值的大小与常规旋风除尘器相比没有明显的规律,大多数稍微小于原旋风除尘器的相应值,由于切向速度和径向速度对粒子的分离起着相反的作用,前者产生离心力使粒子做向外筒壁的径向运动,后者则使粒子做向心的径向运动从而进入内漩涡。径向速度值的减小可提高除尘效率。
就静压而言,旋风除尘器下行流区的静压值比常规旋风除尘器略低(绝对值增大);在排气管底部附近,上行流区静压值比常规旋风除尘器增加显著(绝对值减小),大大高于常规旋风除尘器,总的结果是径向上压力梯度减小。
安装电晕极后,径向静压梯度的减小,意味着液体无论是作旋转运动还是作轴向流动,各流层间来自外界的法向作用力减小,使得内摩擦阻力降低。这必然引起旋风除尘器的降低。
在旋风除尘器内的特定位置上安装电晕极,在不加电压的“静态”条件下,能使旋风除尘器的除尘效率提高约6%。原因是:电晕极对旋风除尘器内的流场分布产生了较大影响,在下行流区切向速度较常规旋风除尘器流场的切向速度稍微增大,下行流区是旋风除尘器的主要有效分离区域,除尘效率的高低主要是由下行流区的切向速度的大小决定的。因此,电晕极对下行流区的切向速度产生的影响(下行流区的切向速度增大)有利于提高除尘效率。旋风除尘器上、下行流交界面内移,即下行流区变宽,在下行流区,轴向速度的绝对值减小,粉尘粒子在旋风除尘器的有效分离区域内的停留时间增加,这对离心力分离粒子是有利的,能够提高除尘效率。
旋风除尘器内的阻力大大降低,旋风除尘器的阻力系数(ξ2=4.81)比常规旋风除尘器的阻力(ξ1=9.21)降低了约47%。主要原因是:电晕极使旋风除尘器内整个区域的切向速度分布曲线比常规旋风除尘器内的切向速度分布曲线变得平缓,速度的最大值与平均值都有所降低,减少了旋转动能损失,切向速度梯度减小和径向静压梯度的减小,内摩擦阻力降低,引起旋风除尘器阻力的降低。
[1]张吉光,叶龙.计算粒子在旋风除尘器内平均停留时间的新方法.青岛建筑工程学院学报,1990,11(3):22-27.
[2]张吉光,李华.旋风分离器流场的实验研究.流体机械,2002,(9).
[3]亢燕铭,沈恒根.高效旋风器降阻条件下的流场特征.西安建筑科技大学学报,1997,29(1):18-21
随着我国经济的快速发展,城市建设、工业生产的力度不断加大,资源和能源的消耗速度日益增长,大气污染防治工作显得越来越紧迫。为改善大气环境质量,国家和各级地方政府陆续颁布多项环保政策和环境治理措施,明确排放标准,严惩超标排放,鼓励采用先进工艺,加大环保投入,促进企业治污减排工作的发展[1]。为响应国家号召,遵守国家及地方政府制定的烟尘控制标准,全国各地火力发电厂均启动了除尘设备改造工程。除尘设备的升级改造,普遍会增加荷载,改变荷载分布情况,因此需要对原除尘器支架和地基基础进行复核计算,并对不满足要求的部分进行改造和加固。准确地对原除尘器支架和地基基础进行复核,合理地选择加固方案,不但对结构安全至关重要,而且对施工周期的控制和项目成本的管理起着关键性作用[2]。
(1)作为加固改造对象的原结构,其建成时间距加固改造时间普遍较长,期间相应规范可能进行了数次更改。原结构初次设计施工时遵循的规范和现行规范之间,可能在计算方法、构造要求、参数指标等方面存在着不同。原结构设计文件、岩土工程勘察报告等资料均是按原规范的标准完成的,而对原结构进行加固改造,则应按照现行规范的规定进行,这就使得加固改造设计时,常常要对原有资料数据进行相应的转换。(2)加固改造前原结构已经承担荷载并产生相应变形。加固改造后,原结构和新增结构在新旧荷载的共同作用下工作[3]。原结构和新增结构是否能组成一个整体协调变形、共同受力,受到结构体系、荷载分布情况和新旧结构构件之间连接方式的影响[4]。(3)现场情况复杂。地面以上分布有较多已建建筑物、构筑物和各种设备,地面以下同时存在着大量的基础、电缆沟及污水管沟等,导致现场空间狭小,干涉众多,限制施工机具设备的使用。同时,由于历史上资料收集不完整、保管不善等原因,可能存在资料缺失的问题,使得部分地下干涉物直到基坑开挖露出之后才发现,造成设计变更。施工过程还可能对周边已建建筑物、构筑物和各种设备产生不利影响。(4)加固改造施工期间通常会影响电厂生产,严重时甚至必须停机,对电厂效益产生较大影响。尤其是一些大型电厂的停机,还会使其周边城镇产生巨大的经济损失。
2.1工程概况。本工程为某电厂电除尘器升级改造工程,地点位于河南省洛阳市,抗震设防烈度为7度,设计基本地震加速度为0.10g,框架抗震等级为三级。拟在原电除尘器烟气入口处增设一电场,需对原电除尘器钢筋混凝土支架及地基基础、原烟道钢筋混凝土支架及地基基础进行改造加固。原钢筋混凝土支架及地基基础竣工时间为1997年,原工程地质勘测报告时间为1993年。原电除尘器钢筋混凝土支架和原烟道钢筋混凝土支架为钢筋混凝土框架结构,四面无围护。原电除尘器支架基础和原烟道支架基础均为钻孔灌注桩基础,桩径0.6m,桩端扩孔直径1.2m,桩长从承台底起算14m,单桩承载力设计值为1500kN。2.2加固改造方案。1/0A轴~A轴为原烟道钢筋混凝土支架,B轴~E轴为原电除尘器钢筋混凝土支架。新增的电场位于A轴~B轴之间。新增电场A轴立柱与原烟道支架A轴立柱顺烟气方向重合,垂直烟气方向偏心240mm,因此考虑对原烟道支架A轴立柱采用外包钢筋混凝土增大截面法加固后利用。根据改造要求,考虑于A轴、B轴间新增3层钢梁与原电除尘器钢筋混凝土支架、原烟道钢筋混凝土支架连接,并拆除原烟道钢筋混凝土支架标高11.900~19.88m间部分梁、柱后用钢斜撑加固(见图1)。因荷载增加,结构变动,应对改造后支架和地基基础进行复核计算,并对不能满足要求的构件进行加固设计。2.3支架复核和加固改造设计。支架结构复核采用PKPM软件建模计算,按现行规范的规定对钢筋混凝土框架柱、钢筋混凝土框架梁和新增钢构件进行复核,对需要加固的构件进行加固设计。(1)框架柱复核。原烟道支架A轴立柱采用外包钢筋混凝土增大截面法加固后(见图2),柱截面尺寸为1000mm×1000mm,混凝土强度等级C30,柱轴压比限值0.85。实际(最大)轴压比为0.33,且实配钢筋与PKPM输出结果相比有较大富余,满足要求;核对其他原框架柱配筋,均能满足要求,无需加固。此处应注意,所有被加固的A轴立柱处新增纵向受力筋应植入原钢筋混凝土承台,植筋深度应满足《混凝土结构加固设计规范》(GB50367—2013)的要求[5],确保柱荷载能有效传递至基础。(2)框架梁复核及加固设计。根据PKPM建模计算结果,复核原框架梁配筋,确定A轴标高4.800m处两跨框架梁、标高11.900m处两跨框架梁和3轴标高11.900m处一跨框架梁配筋不足,需加固。为缩短工期,方便施工,加固采用粘贴钢板加固法,外贴钢板采用厚度为16mm的Q345B级钢板(见图3)。梁柱节点处预埋钢板应与柱箍筋满焊连接。粘贴钢板时,钢板需进行预安装,用部分螺杆临时固定,松开后在钢板上均匀涂刷粘胶剂,用量2~3kg/m2,再安装固定后静置24h,不得扰动。根据规范GB50367—2013第9.2~9.3条,进行加固设计计算,加固后承载力和变形均满足要求。图3粘贴钢板加固梁示意图(3)新增钢梁、钢斜撑设计。新增钢梁为H型钢,高300mm,翼缘宽200mm,腹板厚8mm,翼缘板厚12mm;新增钢斜撑为方钢管,长边500mm,短边300mm,壁厚16mm,主要受轴向拉压力作用。新增钢梁、钢斜撑两端均按刚结点设计,根据PKPM建模计算结果,钢梁、钢斜撑自身承载力、稳定性均有较大富余。新增钢梁、钢斜撑与原钢筋混凝土框架间采用化学植筋并增设埋件连接,植筋长度、植筋间距应满足规范GB50367—2013要求。由于原钢筋混凝土结构部分区域钢筋分布较密,植筋容易遇到原钢筋干涉,故对此类节点,采取在适当的位置增设加劲肋的措施,增加节点刚度,扩大节点面积,从而降低植筋分布密度(见图4、图5)。2.4地基基础复核和加固设计。2.4.1地基基础复核。本工程原基础设计施工时遵循的规范为《建筑地基基础设计规范》(GBJ7—1989)[6],采用的桩基承载力指标是设计值,对应的荷载效应最不利组合为基本组合。对地基基础进行复核时,应符合现行国家规范,即《建筑地基基础设计规范》(GB50007—2011)[7]和《建筑桩基技术规范》(JGJ94—2008)[8]的规定,采用的桩基承载力指标为特征值,对应的荷载效应最不利组合为标准组合。因此,对原结构桩基础承载力进行复核时,不能直接套用原资料中的单桩承载力设计值,而是应求得单桩承载力特征值后进行计算。由于现场条件无法进行静载试验,故仅能通过经验参数计算原基桩单桩承载力特征值,存在较大的不确定性。为确保安全,本次复核计算同时按照新旧规范的规定,对单桩承载力设计值和荷载基本组合、单桩承载力特征值和荷载标准组合分别进行计算,同时满足方可认为满足要求,否则应进行加固。同时,按现行规范要求对桩基沉降和承台承载力进行复核计算。根据复核计算结果,原电除尘器基桩、承台均无需加固。原烟道靠除尘器侧三处柱下单桩基础承载力不满足要求,需加固。2.4.2地基基础加固设计。为提高新旧结构变形协调,保证地基基础加固效果,对原钻孔灌注桩基础的加固宜采用增设基桩的方法。因受已建建筑物、构筑物的影响,静压、锤击、振动等成桩机械设备无法入场,预制桩基础无法施工,故适合选用灌注桩。结合本工程土层特征,地下水位埋深较深,便于人工挖孔成桩,故最终选用人工挖孔灌注桩。具体加固方法为在原钻孔灌注桩基础两侧新增人工挖孔灌注桩,桩长从地面算起为15m,并用新增钢筋混凝土承台把原钢筋混凝土承台包裹在内,通过新增钢筋混凝土承台将新增人工挖孔灌注桩和原混凝土结构有效连接(见图6、图7)。所有新增承台钢筋应植入原承台或立柱,植筋深度应满足规范GB50367—2013的要求。
本加固改造工程于2015年竣工验收后投产运行,情况良好。对本项目经验进行总结,可得以下建议:(1)由于复核计算和加固设计时应满足现行规范的规定,不同于原结构初次设计时所遵循的老版本规范,故设计人员应熟悉并理解历次规范的相关内容和各参数指标变化。根据改造目的,在全面分析结构整体的受力情况下,合理选择复核计算的部位和内容,确保结构安全和经济合理。(2)加固改造设计时,在满足使用要求的前提下应充分利用原结构,尽量减少对原结构的损伤。新旧结构间连接节点设计时,应采用合理的节点形式,注意预埋件、加劲肋、植筋或锚栓等关键部分的设计,保证连接可靠,传力合理,施工方便。(3)由于现场情况复杂,除了收集资料时应详尽外,还应现场踏勘,对重要部位进行实地测量。设计单位应与业主、施工单位密切沟通配合,确定加固改造方案可行,尽量减少设计变更。进行具体的构件、节点设计时,应考虑采用便于调整的方案,减少因个别干涉而进行设计变更时的工作量。(4)确定加固改造方案时,应重点考虑施工周期,选择工程量小、便于施工、工期较短的方案。优先采用钢结构以缩短工期。
[5]混凝土结构加固设计规范:GB50367-2013[S].北京:中国建筑工业出版社,2013.
[6]建筑地基基础设计规范:GBJ7—1989[S].北京:中国建筑工业出版社,1989.
[7]建筑地基基础设计规范:GB50007—2011[S].北京:中国建筑工业出版社,2012.
静电旋风除尘器利用离心力和电场力的共同作用分离粒子。旋风除尘器内安装电晕极(称静电旋风除尘器)但不加电压的运行工况称为静电旋风除尘器的静态工况,此时的除尘效率称为静电旋风除尘器的静态除尘效率。为了研究安装电晕极对静电旋风除尘器静电除尘效率的影响,对常规旋风除尘器和静电旋风除尘器两种情况分别进行了各种入口风速下的静电除尘效率实验。常规旋风除尘器选用长筒体型,筒体直径为40mm、入口尺寸为270×110mm,排灰口直径为116mm。排气管直径为200mm,排气管插入深度460mm。在常规旋风除尘器内安装电晕极构成静电旋风除尘器,电晕极由15根直径4mm钢筋构成网状结构并固定在排气管上。实验粉尘为400h目滑石粉,发尘浓度控制在5g/m3左右。测试结果见图1所示。
由图1可知,常规旋风除尘器安装电晕极后除尘效率明显提高,除尘效率的变化规律与常规旋风除尘器除尘效率的变化规律相同,即先随着入口风速的增加而增加,至一最佳运行工况后,除尘效率又有所降低。常规旋风除尘器最佳运行工况在入口风速V=17m/s左右,此时,其总除尘效率达到了80%;而安装电晕极以后,静电旋风除尘器的静态最佳运行工况约在入口风速V=20m/s左右,静态总除尘效率达到约85%,增幅为6.3%左右。这说明仅仅安装电晕极而不加电压,就能使旋风除尘器的除尘效率明显提高电晕极。在旋风除尘器内具有提高效率的作用。
由上述可知,电晕极在旋风除尘器内具有提高效率的作用,通过实验发现,电晕极在旋风除尘器内也具有降低阻力的作用,常规旋风除尘器与静电旋风除尘器的阻力比较见图2。
计算可得静电旋风除尘器的阻力系数ξ2=4.81,常规旋风除尘器的阻力系数ξ1=9.21,则:。即静电旋风除尘器的阻力系数比常规旋风除尘器的阻力系数降低了约47%。因此,靠电晕极的作用,较好的改善了静电旋风除尘器的阻力特性,这与文献[1]的结论是一致的。与常规旋风除尘器相比,静电旋风除尘器是一种低阻力的粒子分离设备,这对于节能具有极为重要的实际意义。
综上所述,在常规旋风除尘器内安装电晕极,具有降低阻力和提高静态除尘效率(称为降阻增效)的作用,为什么电晕极会对旋风除尘器的阻力和效率有这么大的影响呢?下面将进行分析。
切向速度的大小和径向速度分布直接影响颗粒分离的效率,同时轴向速度分影响了粒子在静电旋风除尘器内有效分离区域的停留时间[1],必然对颗粒的除尘效率产生较大的影响。
旋风除尘器流动阻力主要由三部分组成:即进口局部阻力、旋风筒内旋涡流场中的阻力、排气芯管内的流动阻力。
可见,静电旋风除尘器的阻力和除尘效率与其内部的流场分布密切相关,要分析电晕极降阻增效的原因,就需要知道静电旋风除尘器内的流场分布。
为了研究电晕极安装前后旋风除尘器内三维速度分布的变化规律,分别对旋风除尘器内不安装电晕极(称常规旋风除尘器)和旋风除尘器内安装电晕极(称静电旋风除尘器)两种情况在相同的入口流速下进行了流场测试[2],流场测试仪器为五孔探针,流场的部分测试结果见图3、图4。图中右侧的编号为测试断面编号,在除尘器锥体部分及其他一些位置,电晕极比较密集,有的地方五孔探针无法插入,测点适当减少。某些断面在半径的二分之一到三分之一处均无法读取数据(4、5孔的压力不能调到平衡),分析认为由于电晕极对于筒体内流场的扰动,这些位置气流较为紊乱,使4、5孔无法保持压力平衡。
图3常规旋风除尘器和静电旋风除尘器的图4常规旋风除尘器和静电旋风除尘器的
由图3可知,安装电晕极后,切向速度的分布变得平缓、峰值降低。内涡旋不再是强制涡流动,文献[3]也得出了类似的结论。另外,内外涡旋交界面半径明显外移,即内外涡旋交界面直径由常规旋风除尘器的0.5de外移为1.2de(de为排气管直径)。在筒体和锥体的上半部,下行流区的切向速度有所增大,上行流区的切向速度明显减小,在除尘器内的整个流动区域,平均切向速度明显降低。
粉尘的分离是靠离心力的作用,离心力与粉尘粒子的切向速度的平方成正比。分析不同径向位置颗粒受力情况及轴向速度的分布特点,作者认为,下行流区是旋风除尘器的主要有效分离区域,除尘效率的高低不是仅仅由切向速度的峰值的大小决定的,而是由下行流区的切向速度的大小决定的。因此,电晕极对下行流区的切向速度产生的影响(下行流区的切向速度增大)有利于提高除尘效率。同时,由于在静电旋风除尘器内的整个流动区域,平均切向速度明显降低,尤其是内漩涡区的切向速度大幅度减小,使得旋转动能损失减小,这不仅在除尘器本体内,而且在排气管内,由于旋转流动的减弱必然也会减小旋转动能损失。同时,由于速度梯度的降低,使得内磨擦阻力减小,这两方面的作用,必然引起静电旋风除尘器阻力的减小。
由图3中的轴向速度分布可知,静电旋风除尘器上、下行流交界面内移,即上行流区变宽。在下行流区,轴向速度的绝对值减小,这说明粉尘粒子在静电旋风除尘器的有效分离区域内的停留时间增加,这对离心力分离粒子是有利的,能够提高除尘效率。另外,轴向速度梯度减小,内摩擦阻力降低,有利于静电旋风除尘器的减阻。
径向速度分布比较紊乱,尤其在电晕极附近,径向速度分布与常规旋风除尘器相比有较动。径向速度方向基本都是向心的,其值的大小与常规旋风除尘器相比没有明显的规律,大多数稍微小于原旋风除尘器的相应值,由于切向速度和径向速度对粒子的分离起着相反的作用,前者产生离心力使粒子做向外筒壁的径向运动,后者则使粒子做向心的径向运动从而进入内漩涡。径向速度值的减小可提高除尘效率。
就静压而言,静电旋风除尘器下行流区的静压值比常规旋风除尘器略低(绝对值增大);在排气管底部附近,上行流区静压值比常规旋风除尘器增加显著(绝对值减小),大大高于常规旋风除尘器,总的结果是径向上压力梯度减小。
安装电晕极后,径向静压梯度的减小,意味着液体无论是作旋转运动还是作轴向流动,各流层间来自外界的法向作用力减小,使得内摩擦阻力降低。这必然引起静电旋风除尘器的降低。
在旋风除尘器内的特定位置上安装电晕极,在不加电压的静态条件下,能使静电旋风除尘器的除尘效率提高约6%。原因是:电晕极对旋风除尘器内的流场分布产生了较大影响,在下行流区切向速度较常规旋风除尘器流场的切向速度稍微增大,下行流区是旋风除尘器的主要有效分离区域,除尘效率的高低主要是由下行流区的切向速度的大小决定的。因此,电晕极对下行流区的切向速度产生的影响(下行流区的切向速度增大)有利于提高除尘效率。静电旋风除尘器上、下行流交界面内移,即下行流区变宽,在下行流区,轴向速度的绝对值减小,粉尘粒子在静电旋风除尘器的有效分离区域内的停留时间增加,这对离心力分离粒子是有利的,能够提高除尘效率。
静电旋风除尘器内的阻力大大降低,静电旋风除尘器的阻力系数(ξ2=4.81)比常规旋风除尘器的阻力(ξ1=9.21)降低了约47%。主要原因是:电晕极使静电旋风除尘器内整个区域的切向速度分布曲线比常规旋风除尘器内的切向速度分布曲线变得平缓,速度的最大值与平均值都有所降低,减少了旋转动能损失,切向速度梯度减小和径向静压梯度的减小,内摩擦阻力降低,引起静电旋风除尘器阻力的降低。
1张吉光,叶龙,计算粒子在旋风除尘器内平均停留时间的新方法,青岛建筑工程学院学报,1990,11(3):22~27
旋风除尘器内的流动主要受切向速度支配,旋风除尘器的性能,也主要与切向速度相关。在以往研究旋风除尘器的文献中,关于切向速度的描述均视内涡旋为类似刚体旋转的强制涡、外涡旋为无粘性的似位势流的自由涡,至多考虑到流体粘性的存在而将内涡旋描述为准强制涡,将外涡旋描述为准自由涡,而仅对速度n进行非理想流体旋涡流动的修正,以使n的选取更符合实际情况。一般根据其根据其实验模型流场测定的结果将n取为0.5~0.9之间的某一值,切向速度υt与半径r关系的公式形式为
实际上,流体粘性的影响绝非是不取n=1所能体现的。笔者经实验发现,n是径向距离r的函数。因此为更准确地描述切向速度的分布规律,必须充分考虑流体粘性的影响,寻求更准确的数学表达形式。
安装减阻杆后,对旋风除尘器内的流动已不能再作二维轴对称流动的假定。笔者基于绕流理论,推导了安装不同类型减阻杆后的切向速度的计算公式,根据这些公式计算的结果均能与实验结果较好地吻合。限于篇幅,本文仅给出安装圆形断面减阻杆时切向速度公式的推导过程。本文的实验数据是在340mm筒径的Stairmand高效旋风除尘器模型上取得的。实验中,控制旋风除尘器的入口速度为19.5m/s。
在整个外涡旋中,拟合切向速度对径向距离的分布,得到平均的分布指数n=0.73。将n取作定值计算结果与实验结果的比较如图1所示。
从图中可看出将n取为固定值0.73时,切向速度计算结果与实验结果的差别。特别是在内外涡旋交界面及其附近区域,该差别是非常大的。考虑到内外涡旋交界面及边壁附近的n值与在整个外涡旋中的均值差别较大,故拟合中舍弃两端点,由此所得的平均n值为0.75,将此n值切向速度计算结果一并绘入图1中。由此可见,虽然此时在内外涡旋交界面及其附近区域误差变小,但在外涡旋的大部分区域误差却增大。因此,n值无论如何选取,无论作何种修正,只要将其取为定值,便会产生很大误差。
设粘性流场中包围一固定体积V的封闭表面积为S,用符号Ω代表旋度,则在dt时间内从S表面输出旋度
由柱坐标系下拉普拉斯算子的形式,及考虑减阻前常规旋风除尘器内可视为二维轴对称流场,则式(3)变为
由图2可以看出,基于粘性流体考虑推导所得切向速度分布计算公式的计算结果与实验结果吻合很好。
4加装圆形断面减阻杆后切向速度计算公式的推导及其计算结果与实验结果的比较
根据流体绕流圆柱体的流动规律可推导出安装圆形断面减阻杆时切向速度的计算公式。参见图3(C为源点,B为汇点)。
式(16)表明切向速度与流体在旋风除尘器内的旋转角度有关,即减阻杆的引入改变了原来轴对称的流动规律。
由取a为不同数值时的计算结果与实验结果的比较可知,当a接近30°时,流动已趋于稳定且与实验数据能较好吻合,故本文将a取为30°。利用公式(16)计算所得的切向速度值与实验结果的比较如图4所示。
图4表明,按来流流函数与假想偶极子流函数叠加计算所得的切向速度值与实验数据的吻合程度是比较好的。误差产生的原因是由于公式推导过程中没有考虑流体的螺旋运动。实验流体绕流后,经过一周旋转,下降了一定高度又要重新绕流,也就是在分离器高度上与偶极流叠加的来流速度是不断变化的。但是,实验结果表明,加装减阻杆后与常规旋风除尘器一样,切向速度沿轴向的梯度很小,似乎在旋风除尘器高度上,来流速度是不变的。因此,上述的推导方法又是可取的。因按理论推导所得公式计算的结果与实验结果能达到较好吻合,故本文中未对流体的螺旋运动进行修正。
因充满分考虑了流体的粘性,故本文推导所得的切向速度计算公式能与实验结果很好吻合除尘器,这为旋风除尘器分离效率和流动阻力等的准确计算提供了可能。从偶极子绕流出发,本文推导的安装减阻杆后的切向速度计算公式亦能与实验结果较好地吻合。基于粘性流体理论,如何推导旋风除尘器内轴向速度和径向速度的数学表达式,将是笔者进一步研究的目标。
掘进通风的方式有四种,为混合式、抽出式压入式和可控循环式。掘进通风除尘技术是以压抽混合式通风作为基础的,然后配合使用除尘器由此发展而来。秦跃平等研究“长压短抽”式除尘通风时掘进巷道中粉尘运移和分布规律,与压风筒口位置、抽吸比及压入风量等通风参数进行对比,从而分析对粉尘分布范围及其浓度的影响。前苏联谢别列夫等学者对矿用空气幕进行了大量的研究,并在20世纪50年代将空气幕引入矿山巷道中。
新式机械除尘净化装备采用掘进机喷雾降尘系统和抽尘净化系统的组合,使二者配合,达到高效除尘的效果。一方面要降低粉尘产生量,利用内喷雾将大部分粉尘消灭在产尘的初期,外喷雾防止粉尘扩散、并将大颗粒的粉尘沉降下来。喷雾降尘无法将粉尘全部消除,尤其是微细粉尘。如图1所示为抽尘净化装置示意图,除尘风机产生负压把掘进产生的含尘空气抽吸到净化器内部,随气流继续运动被除尘器叠板阻挡拦截并沉降。喷雾水由电磁阀控制,水压力不小于0.5MPa。除尘器叠板由多层波形不锈钢丝网组成,各层筛网又交替用很细的不锈钢金属丝编制而成。除尘器就是由这样一组波纹板组成,被喷雾润湿的粉尘颗粒经过除尘器叠板时基本上被粘附捕集,并顺金属丝向下流到集水圆锥体内,污风得到很好的净化。除尘器在系统中位置,最初考虑布置在转载机上,这样除尘器就可随转载机同时随掘进机移动。后来考虑除尘器固定稳定性和转载机的强度,转载机需要重新设计加固,另外安装高度要高,将限制其使用范围。
为了满足系统对工作面的有效供风量要求,更换了2×30KW大功率的风机和高质量的风筒;为了保证湿式降尘器内喷嘴的雾化效果和防止喷嘴堵塞,降尘器供水采用了清水,并在除尘空间上设置了过滤器。系统成套设备下井安装调试完毕,并开始了井下工业性试验。累计共试验98个工作日,共掘进距离1240m,试验期间,由矿上通风科对工作面粉尘情况进行测定。式中总粉尘浓度降尘率达97.8%~98.4%;呼吸性粉尘降尘率达97.2%~97.9%;降尘器总粉尘浓度降尘达98.2%;呼吸性粉尘降尘率达98.0%。如图2所示为除尘净化系统布置示意图,除尘净化系统随同掘进机同步移动。为实现同步移动,将抽尘风筒固定在掘进机上,吸入口位于司机的前方1.2m处,除尘器和离心风机放置在同一个架子上并骑跨在伸缩式胶带机的机尾架上,通过桥式转载机与掘进机联系在一起实现同步。
旋转流场为进风口处的风经旋流器形成的定向风流,具有一定的正压,防止粉尘向外扩散,避免二次扬尘;向下压的旋转正压分流流场诱导掘进头处粉尘定向流动并向下导流进入负压吸风口,且能够在作业人员和粉尘之间形成一道风墙。吸风口,且能够在作业人员和粉尘之间形成一道风墙。
[1]秦军,陈谋志,李伟锋,等.双通道气流式喷嘴加压雾化的实验研究[J].燃烧科学与技术,2005,11(4):383-387.
[2]卢平,梁晓燕,章名耀.双流体喷嘴雾化特性的试验研究[J].南京师范大学学报,2008,8(1):33-37.
[3]李振祥,郭志辉,车俊龙,等.一种强剪切空气除尘器的流场和喷雾[J].航空动力学报,2014,29(11):2703-2709.
[4]郑捷庆,罗惕乾,张军,等.气力式除尘器最佳气耗率的试验[J].农业机械学报,2007,38(10):196-200.
静电旋风除尘器利用离心力和电场力的共同作用分离粒子。旋风除尘器内安装电晕极(称静电旋风除尘器)但不加电压的运行工况称为静电旋风除尘器的静态工况,此时的除尘效率称为静电旋风除尘器的静态除尘效率。为了研究安装电晕极对静电旋风除尘器静电除尘效率的影响,对常规旋风除尘器和静电旋风除尘器两种情况分别进行了各种入口风速下的静电除尘效率实验。常规旋风除尘器选用长筒体型,筒体直径为40mm、入口尺寸为270×110mm,排灰口直径为116mm。排气管直径为200mm,排气管插入深度460mm。在常规旋风除尘器内安装电晕极构成静电旋风除尘器,电晕极由15根直径4mm钢筋构成网状结构并固定在排气管上。实验粉尘为400h目滑石粉,发尘浓度控制在5g/m3左右。测试结果见图1所示。
由图1可知,常规旋风除尘器安装电晕极后除尘效率明显提高,除尘效率的变化规律与常规旋风除尘器除尘效率的变化规律相同,即先随着入口风速的增加而增加,至一最佳运行工况后,除尘效率又有所降低。常规旋风除尘器最佳运行工况在入口风速V=17m/s左右,此时,其总除尘效率达到了80%;而安装电晕极以后,静电旋风除尘器的静态最佳运行工况约在入口风速V=20m/s左右,静态总除尘效率达到约85%,增幅为6.3%左右。这说明仅仅安装电晕极而不加电压,就能使旋风除尘器的除尘效率明显提高电晕极。在旋风除尘器内具有提高效率的作用。
由上述可知,电晕极在旋风除尘器内具有提高效率的作用,通过实验发现,电晕极在旋风除尘器内也具有降低阻力的作用,常规旋风除尘器与静电旋风除尘器的阻力比较见图2。
计算可得静电旋风除尘器的阻力系数ξ2=4.81,常规旋风除尘器的阻力系数ξ1=9.21,则:。即静电旋风除尘器的阻力系数比常规旋风除尘器的阻力系数降低了约47%。因此,靠电晕极的作用,较好的改善了静电旋风除尘器的阻力特性,这与文献[1]的结论是一致的。与常规旋风除尘器相比,静电旋风除尘器是一种低阻力的粒子分离设备,这对于节能具有极为重要的实际意义。
综上所述,在常规旋风除尘器内安装电晕极,具有降低阻力和提高静态除尘效率(称为降阻增效)的作用,为什么电晕极会对旋风除尘器的阻力和效率有这么大的影响呢?下面将进行分析。
切向速度的大小和径向速度分布直接影响颗粒分离的效率,同时轴向速度分影响了粒子在静电旋风除尘器内有效分离区域的停留时间[1],必然对颗粒的除尘效率产生较大的影响。
旋风除尘器流动阻力主要由三部分组成:即进口局部阻力、旋风筒内旋涡流场中的阻力、排气芯管内的流动阻力。
可见,静电旋风除尘器的阻力和除尘效率与其内部的流场分布密切相关,要分析电晕极降阻增效的原因,就需要知道静电旋风除尘器内的流场分布。
为了研究电晕极安装前后旋风除尘器内三维速度分布的变化规律,分别对旋风除尘器内不安装电晕极(称常规旋风除尘器)和旋风除尘器内安装电晕极(称静电旋风除尘器)两种情况在相同的入口流速下进行了流场测试[2],流场测试仪器为五孔探针,流场的部分测试结果见图3、图4。图中右侧的编号为测试断面编号,在除尘器锥体部分及其他一些位置,电晕极比较密集,有的地方五孔探针无法插入,测点适当减少。某些断面在半径的二分之一到三分之一处均无法读取数据(4、5孔的压力不能调到平衡),分析认为由于电晕极对于筒体内流场的扰动,这些位置气流较为紊乱,使4、5孔无法保持压力平衡。
图3常规旋风除尘器和静电旋风除尘器的图4常规旋风除尘器和静电旋风除尘器的
由图3可知,安装电晕极后,切向速度的分布变得平缓、峰值降低。内涡旋不再是强制涡流动,文献[3]也得出了类似的结论。另外,内外涡旋交界面半径明显外移,即内外涡旋交界面直径由常规旋风除尘器的0.5de外移为1.2de(de为排气管直径)。在筒体和锥体的上半部,下行流区的切向速度有所增大,上行流区的切向速度明显减小,在除尘器内的整个流动区域,平均切向速度明显降低。
粉尘的分离是靠离心力的作用,离心力与粉尘粒子的切向速度的平方成正比。分析不同径向位置颗粒受力情况及轴向速度的分布特点,作者认为,下行流区是旋风除尘器的主要有效分离区域,除尘效率的高低不是仅仅由切向速度的峰值的大小决定的,而是由下行流区的切向速度的大小决定的。因此,电晕极对下行流区的切向速度产生的影响(下行流区的切向速度增大)有利于提高除尘效率。同时,由于在静电旋风除尘器内的整个流动区域,平均切向速度明显降低,尤其是内漩涡区的切向速度大幅度减小,使得旋转动能损失减小,这不仅在除尘器本体内,而且在排气管内,由于旋转流动的减弱必然也会减小旋转动能损失。同时,由于速度梯度的降低,使得内磨擦阻力减小,这两方面的作用,必然引起静电旋风除尘器阻力的减小。
由图3中的轴向速度分布可知,静电旋风除尘器上、下行流交界面内移,即上行流区变宽。在下行流区,轴向速度的绝对值减小,这说明粉尘粒子在静电旋风除尘器的有效分离区域内的停留时间增加,这对离心力分离粒子是有利的,能够提高除尘效率。另外,轴向速度梯度减小,内摩擦阻力降低,有利于静电旋风除尘器的减阻。
径向速度分布比较紊乱,尤其在电晕极附近,径向速度分布与常规旋风除尘器相比有较动。径向速度方向基本都是向心的,其值的大小与常规旋风除尘器相比没有明显的规律,大多数稍微小于原旋风除尘器的相应值,由于切向速度和径向速度对粒子的分离起着相反的作用,前者产生离心力使粒子做向外筒壁的径向运动,后者则使粒子做向心的径向运动从而进入内漩涡。径向速度值的减小可提高除尘效率。
就静压而言,静电旋风除尘器下行流区的静压值比常规旋风除尘器略低(绝对值增大);在排气管底部附近,上行流区静压值比常规旋风除尘器增加显著(绝对值减小),大大高于常规旋风除尘器,总的结果是径向上压力梯度减小。
安装电晕极后,径向静压梯度的减小,意味着液体无论是作旋转运动还是作轴向流动,各流层间来自外界的法向作用力减小,使得内摩擦阻力降低。这必然引起静电旋风除尘器的降低。
在旋风除尘器内的特定位置上安装电晕极,在不加电压的静态条件下,能使静电旋风除尘器的除尘效率提高约6%。原因是:电晕极对旋风除尘器内的流场分布产生了较大影响,在下行流区切向速度较常规旋风除尘器流场的切向速度稍微增大,下行流区是旋风除尘器的主要有效分离区域,除尘效率的高低主要是由下行流区的切向速度的大小决定的。因此,电晕极对下行流区的切向速度产生的影响(下行流区的切向速度增大)有利于提高除尘效率。静电旋风除尘器上、下行流交界面内移,即下行流区变宽,在下行流区,轴向速度的绝对值减小,粉尘粒子在静电旋风除尘器的有效分离区域内的停留时间增加,这对离心力分离粒子是有利的,能够提高除尘效率。
静电旋风除尘器内的阻力大大降低,静电旋风除尘器的阻力系数(ξ2=4.81)比常规旋风除尘器的阻力(ξ1=9.21)降低了约47%。主要原因是:电晕极使静电旋风除尘器内整个区域的切向速度分布曲线比常规旋风除尘器内的切向速度分布曲线变得平缓,速度的最大值与平均值都有所降低,减少了旋转动能损失,切向速度梯度减小和径向静压梯度的减小,内摩擦阻力降低,引起静电旋风除尘器阻力的降低。
1张吉光,叶龙,计算粒子在旋风除尘器内平均停留时间的新方法,青岛建筑工程学院学报,1990,11(3):22~27
能源节约利用关系到各项生产建设的可持续开展,随着节能减排力度的加大以及煤炭市场价格波动,使火电厂发展形势日趋严峻。火电厂要想获得经济效益与社会效益,就要找到节能减耗的方法,实现成本的节约与优化。电除尘器是发电厂生产不可缺少的设备,但依然存在一些不足,比如,电除尘耗能高,火电厂成本升高等。下文将对电除尘器工作原理、应用进行分析,提出几点优化对策。
电除尘器在开始除尘以后,会借助电场的延长来将除尘的速率提高,四个电场是电除尘器的一个特点,如果是常规粉尘状态,能使除尘效率达89%以上;而使用的是5个以上电场除尘器则除尘效率更高。在除尘器使用到一定时期以后,电极容易出现腐蚀或者老化造成除尘效果不显著[1]。
设备阻力损失、供电装置、加热保温以及振动电动机是电除尘器能耗的主要部件,主要能耗为阻力损失,占总能耗的较大比重,通常,100~200Pa是除尘器阻力值,占袋式除尘器的1/4,但因为存在较低的总能耗,并且元件更换不及时也会降低运行总费用[2]。
通常,电除尘器能够铺集粒径大小为0.2um,烟气温度为200~300℃之间,如果烟气温度参数出现波动则会降低除尘能力,模块化是电除尘器主要结构,大型化装置趋势强。
电除尘器通常处于静电场状态下,在阴阳两极中存在气体电离层,电离层中生成大量的电子、负荷离子等造成电场聚集过多烟雾尘粒相互结合形成荷电,荷电粒子承受电场作用能够分两极移动,最终分离出烟雾中的尘粒以及气体,使气体得到净化。但是两极荷电尘粒能够将部分电荷释放出来,在高压静电场作用下实现带电尘粒两极化运行[3]。当尘粒全部集中到两极板表面时,可以使用打压振动法减少聚集在极板表面的灰尘,使全部尘粒被集中起来。
电除尘器在运行当中,能效与电晕功率之间存在相关性,除尘效率增大的情况下电晕功率也会增加。但也存在特殊情况,比如,在使用低硫煤炭或者高比电阻粉时,也会受到反电晕的影响,将电除尘器电压增大时将造成反电晕超过限度,致使除尘的效率下降,还会使电阻粉尘在达到尘极以后,使电荷释放过多。荷电粉尘如果释放受阻,将出现电位梯度,造成电位梯度过大。当粉尘接近临界值时,粉尘将超出临界值,电晕极性将相反产生逆向正离子,这是因为粉尘层间隙形成局部击穿,产生正离子以后又出现电晕极,在电晕区带有正负粒子。这种结果下就会造成电流与电压增大,收尘的效果不佳。由此,反晕现象的产生是造成电阻粉尘的一个可能性,将造成电能消耗过大,使收尘效率降低[4]。
当前,社会生产与生活对技能环保越来越注重,并积极贯彻节能环保理念,当前,出现了越来越多性能高、自动化强的除尘器,这一代除尘器系统电源能够自动控制与操作,有越来越多的人应用,为人们更好的使用电除尘器提供了支持。下面将提出一些提高电除尘器除尘效率的方法。
阴极线改进方法主要体现在检修计划上,鉴于阴极线会不断受到粉尘冲刷进而造成严重的氧化或者磨损问题,造成检修的同时需要机组长时间处于停运状态。受损的阴极线如果没有得到改进或者增强,将造成除尘效率降低,使电除尘消耗过多电能。为了杜绝这类事件发生,电厂通常会在机组A级检修阶段改进阴极线,使用混合极配比,这种配比形式能够使电晕分布更加均匀、密度更强,进而对反电晕的产生进行抑制;在确保运行效率基础上扩大煤种使用范围,还能够将电场死区消除,提升收尘实效性[5]。
通常情况下,除尘效率增加与集尘面积相关,并呈正比关系,是保证除尘效率增强的重要方法。提高除尘效率的一个重要方法就是扩大集尘面积。集尘面积能够将量电阻粉尘带来的危害克服,减少出现恶劣工况对除尘器运行效率的影响。阳极面积通常较大,在进行阳极板改进的同时还要对除尘外壳进行解体,并要在检修过程中冲刷收尘极,改进过后的收尘极板节能效果更强。
改变控制电压是控制主回路阴阳极的一个重要方法,方法是对主回路阴阳极可控硅的电压进行控制,从而得知阴阳极是否存在断电情况,可控硅与电子开关在功能上一致,通过对功耗的削减能够使通断性能快速增大,进而提高电除尘器系统运行效率。
电除尘器电源改造也是一个非常重要的内容,主要是对新型高频电源进行改造,确保参数控制更加稳定、准确,进而使节能效率增强。电除尘器的高频电源提供的是无波直流电源,使静电除尘器在次火花点电压下运行,进而将电除尘器供电电压与电流提高,使电晕功率增大了,将电除尘器效率提高。高频电源所提供的直流电使脉动幅度增大时,将获得脉动幅度很大的电压波形,针对这种情况,不仅能够将适合的电压波形提高,还能够最大限度的将除尘效率提高。
低压控制器与高压控制器是控制器的主要类型,两种控制器负责不同的输入电压,高压控制器负责对整流变输入电压调整,而低压控制器则对阴极、阳极振动电机、排灰电机、瓷套电加热器、仓壁振动控制器进行调节,使这些电气启动与运行更加安全、平稳,更好的对除尘控制器进行改进,进而将电除尘器运行效率增强[6]。最后是对电除尘脉冲供电方式进行改进,这是节能效果最好的一种供电形式,通过利用电容储能特性以及电感、电压特性对运行电流、电压进行控制。应用此方法的优势较多,不仅能够将除尘效率提高,还能够对电除尘器运行时产生的电晕现象进行控制,进而将光能与热能消耗降低,实现节能减排效果。
通过在电厂电除尘器中应用节能技术不仅能够使改造成本降低,还能够得到电厂工人以及管理人员的一致认可,认为电除尘器应用数量与设计都彼此相关,使电除尘器性能将大大改善,进而获得经济效益与社会效益。由此,不断优化设计电除尘器,使用最新的节能技术不仅能够使电除尘效率提高,降低电厂能源消耗,延长除尘器使用寿命,更能为电厂可持续发展创造条件。
[1]李卓函,邵诚,杨素英,等.异构总线多协议网关设计及其在电除尘监控系统中应用[J].大连理工大学学报,2013,(3).
[2]刘军.LCC-SPRC高压高频大功率电除尘电源的理论分析与功率参数设计[D].杭州:浙江大学,2010.
[3]佟林.电除尘电气部分的日常维护和常见故障的诊断、处理[J].科技视界,2015,(26).
[4]杜泽填,刘宇,李忠峰,等.电除尘集散控制系统在烧结机组生产中的应用[J].冶金能源,2015,(5).